Abstract

This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. Inherent CMOS polysilicon thin film was utilized as piezoresistive material and full Wheatstone bridge was constructed through easy wiring allowed by three metal layers in CMOS thin films. The device fabrication process consists of a standard CMOS process for sensor configuration and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. Bulk single-crystal silicon (SCS) substrate was included in the proof mass to increase sensor sensitivity. With a low operating power of 1.5 mW, the sensitivity was measured as 0.077 mV/g prior to amplification. The sensor was characterized on a magnetic shaker based dynamic test system with a high-end commercial calibrating accelerometer as reference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.