Abstract
In this paper, we propose an analog CMOS circuit which achieves spiking neural networks with spike-timing dependent synaptic plasticity (STDP). In particular, we propose a STDP circuit with symmetric function for the first time, and also we demonstrate associative memory operation in a Hopfield-type feedback network with STDP learning. In our spiking neuron model, analog information expressing processing results is given by the relative timing of spike firing events. It is well known that a biological neuron changes its synaptic weights by STDP, which provides learning rules depending on relative timing between asynchronous spikes. Therefore, STDP can be used for spiking neural systems with learning function. The measurement results of fabricated chips using TSMC 0.25µm CMOS process technology demonstrate that our spiking neuron circuit can construct feedback networks and update synaptic weights based on relative timing between asynchronous spikes by a symmetric or an asymmetric STDP circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.