Abstract

This work presents and implements a CMOS real-time focal-plane motion sensor intended to detect the global motion, using the bipolar junction transistor (BJT)-based retinal smoothing network and the modified correlation-based algorithm. In the proposed design, the BJT-based retinal photoreceptor and smoothing network are adopted to acquire images and enhance the contrast of an image while the modified correlation-based algorithm is used in signal processing to determine the velocity and direction of the incident image. The deviations of the calculated velocity and direction for different image patterns are greatly reduced by averaging the correlated output over 16 frame-sampling periods. The proposed motion sensor includes a 32/spl times/32 pixel array with a pixel size of 100/spl times/100 /spl mu/m/sup 2/. The fill factor is 11.6% and the total chip area is 4200/spl times/4000 /spl mu/m/sup 2/. The DC power consumption is 120 mW at 5 V in the dark. Experimental results have successfully confirmed that the proposed motion sensor can work with different incident images and detect a velocity between 1 pixel/s and 140,000 pixels/s via controlling the frame-sampling period. The minimum detectable displacement in a frame-sampling period is 5 /spl mu/m. Consequently, the proposed high-performance new motion sensor can be applied to many real-time motion detection systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call