Abstract

This paper presents a CMOS readout circuit for an integrated and highly-sensitive tunnel-magnetoresistive (TMR) sensor. Based on the characterization of the TMR sensor in the finite-element simulation, using COMSOL Multiphysics, the circuit including a Wheatstone bridge and an analogue front-end (AFE) circuit, were designed to achieve low-noise and low-power sensing. We present a transimpedance amplifier (TIA) that biases and amplifies a TMR sensor array using switched-capacitors external noise filtering and allows the integration of TMR sensors on CMOS without decreasing the measurement resolution. Designed using TSMC 0.18 μm 1V technology, the amplifier consumes 160 nA at 1.8 V supply to achieve a dc gain of 118 dB and a bandwidth of 3.8 MHz. The results confirm that the full system is able to detect the magnetic field in the pico-Tesla range with low circuit noise (2.297 pA/√Hz) and low power consumption (86 μW). A concurrent reduction in the power consumption and attenuation of noise in TMR sensors makes them suitable for long-term deployment in spintronic sensing systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.