Abstract

In vivo multi-target and selective concentration monitoring of neurotransmitters can help to unravel the brain chemical complex signaling interplay. This paper presents a dedicated integrated potentiostat transducer circuit and its selective electrode interface. A custom 2-electrode time-based potentiostat circuit was fabricated with 0.13 μm CMOS technology and provides a wide dynamic input current range of 20 pA to 600 nA with 56 μ W, for a minimum sampling frequency of 1.25 kHz. A multi-working electrode chip is functionalized with carbon nanotubes (CNT)-based chemical coatings that offer high sensitivity and selectivity towards electroactive dopamine and non-electroactive glutamate. The prototype was experimentally tested with different concentrations levels of both neurotransmitter types, and results were similar to measurements with a commercially available potentiostat. This paper validates the functionality of the proposed biosensor, and demonstrates its potential for the selective detection of a large number of neurochemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.