Abstract

<p>Automated classifications of atmospheric circulations are a well-known tool to characterize large-scale patterns that predominantly determine day-to-day weather variations. Through its potential influence on the relative frequency of circulation patterns, global warming can also enhance or mitigate the occurrence of extreme weather events.</p><p>Here, we use a subset of 22 CMIP6  global climate models (GCMs) to assess their ability to capture these recurrent circulation patterns and their implication for the European climate and its projected changes.</p><p>We investigate links between synoptic circulations and short-term meteorological drought events that span one month. We employ the automated Jenkinson-Collison classification to determine daily atmospheric features based on mean sea-level pressure. We compute the conditional probability of dry days related to each circulation type. Furthermore, we confirm the influence of these patterns on the occurrence of dry months by computing the monthly relative frequency anomalies of the synoptic circulations given months where the Standardized Precipitation Index (SPI) was below minus 1. We evaluate the ability of the historical runs of global climate models (GCMs) to reproduce the observed features from the ERA5 reanalyses over the 1961-1990 reference period. Links between the mean directional flow characteristics of the circulation types and the dry days and months are well represented by most GCMs. The most robust relationships were found for the anticyclonic, easterly, and low flow types. These circulations are generally associated with a lack of precipitation and therefore show higher than average occurrences during dry months. </p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call