Abstract

Clustering in wireless sensor networks has been widely discussed in the literature as a strategy to reduce power consumption. However, aspects such as cluster formation and cluster head (CH) node assignment strategies have a significant impact on quality of service, as energy savings imply restrictions in application usage and data traffic within the network. Regarding the first aspect, this article proposes a hierarchical routing protocol based on the k-d tree algorithm, taking a partition data structure of the space to organize nodes into clusters. For the second aspect, we propose a reactive mechanism for the formation of CH nodes, with the purpose of improving delay, jitter, and throughput, in contrast with the low-energy adaptive clustering hierarchy/hierarchy-centralized protocol and validating the results through simulation.

Highlights

  • Wireless Sensor Networks (WSN) have exploded in popularity in the last few years

  • Regarding cluster head (CH) node formation in each round, we observed that Low-Energy Adaptive Clustering Hierarchy protocol (LEACH) and low-energy adaptive clustering hierarchy-centralized (LEACH-C) reduces the formation of CH nodes as nodes die

  • The reason is that the energy that LEACH and LEACH-C used in node formation is offset by the energy used in selecting CH nodes in H-kdtree, being that the latter is more stable in terms of variations and allows for a more stable behavior in the data transmission phase

Read more

Summary

Introduction

Wireless Sensor Networks (WSN) have exploded in popularity in the last few years. Part of this growth is due to the popularization of the Internet of Things (IoT), where connectivity, sensitivity, interaction, and energy are elements of the systems in a WSN. In a WSN, a node is defined as the minimal functional unit of a network and is comprised of a sensor/actuator, a central processing unit (CPU), a memory bank, a wireless transceiver, and a power source. The Low-Energy Adaptive Clustering Hierarchy protocol (LEACH) uses a cluster-based routing scheme to minimize total network energy consumption. Many authors refer to the base node as Sink node [38], which we refer to from this point on as

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.