Abstract
AbstractThis study investigates the application of clustering techniques to enhance the accuracy of hierarchical classification and regression (HCR) models for predicting concrete compressive strength (CCS). Following the hypothesis that integrating clustering at the initial levels of model hierarchy reduces classification errors and prevents their propagation to subsequent levels, HCR models were developed utilizing both the unweighted pair group method with arithmetic mean (UPGMA) and hard clustering (HC) methods. Findings demonstrate that models using UPGMA significantly outperform those based on HC. Furthermore, it was demonstrated that further hierarchical clustering allows for multilayered HCR models that improve predictive performance by further leveraging parent–child relationships within data clusters. Overall, this study demonstrates that the proposed methodology can be introduced in the model development pipeline to enhance the prediction accuracy of CCS models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.