Abstract

Online traffic state identification plays an important role in achieving the potentials promised by Intelligent Transportation Systems (ITS) on various traffic applications, e.g., real time traffic monitoring systems. Traditional approaches have shown the limitations in either obtaining the necessary pre-determined information or having difficulties in their online implementation. This paper introduces an online agglomerative clustering procedure for freeway traffic state identification using ITS data, represented by three traffic condition variables of flow rate, speed, and occupancy. An optimal fit of the statistical characteristics is provided by maximizing the intra-cluster data point distances and minimizing inter-cluster data point distances through a joint utilization of the Bayesian Information Criterion and the ratio of change of the dispersion measurements. Test results show that the identified freeway traffic states through the proposed procedure are reasonable and consistent with the common understandings on freeway traffic operating conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.