Abstract

ABSTRACT Machine learning (ML) techniques can be utilized by physicians, clinicians, as well as other users, to discover Autism Spectrum Disorder (ASD) symptoms based on historical cases and controls to enhance autism screening efficiency and accuracy. The aim of this study is to improve the performance of detecting ASD traits by reducing data dimensionality and eliminating redundancy in the autism dataset. To achieve this, a new semi-supervised ML framework approach called Clustering-based Autistic Trait Classification (CATC) is proposed that uses a clustering technique and that validates classifiers using classification techniques. The proposed method identifies potential autism cases based on their similarity traits as opposed to a scoring function used by many ASD screening tools. Empirical results on different datasets involving children, adolescents, and adults were verified and compared to other common machine learning classification techniques. The results showed that CATC offers classifiers with higher predictive accuracy, sensitivity, and specificity rates than those of other intelligent classification approaches such as Artificial Neural Network (ANN), Random Forest, Random Trees, and Rule Induction. These classifiers are useful as they are exploited by diagnosticians and other stakeholders involved in ASD screening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.