Abstract

This paper presents a cluster validity measure with a hybrid parameter search method for the support vector clustering (SVC) algorithm to identify an optimal cluster structure for a given data set. The cluster structure obtained by the SVC is controlled by two parameters: the parameter of kernel functions, denoted as q; and the soft-margin constant of Lagrangian functions, denoted as C. Large trial-and-error search efforts on these two parameters are necessary for reaching a satisfactory clustering result. From intensive observations of the behavior of the cluster splitting, we found that (1) the overall search range of q is related to the densities of the clusters; (2) each cluster structure corresponds to an interval of q , and the size of each interval is different; and (3) identifying the optimal structure is equivalent to finding the largest interval among all intervals. We have based our findings on developing a validity measure with an ad hoc parameter search algorithm to enable the SVC algorithm to identify optimal cluster configurations with a minimal number of executions. Computer simulations have been conducted on benchmark data sets to demonstrate the effectiveness and robustness of our proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call