Abstract

The adsorption of binary mixtures on heterogeneous surfaces is studied by a cluster approximation (CA), based on the exact calculation of configurations on finite cells. The substrate is characterized by n types of sites, each with different adsorption energy. The process is monitored through the total and partial isotherms. The theoretical formalism is used to model experimental data of methane–ethane mixtures adsorbed on a template-synthesized carbon. The CA results are compared with the ones corresponding to the well-known Ideal Adsorbed Solution Theory (IAST). Even though a good fitting is obtained from IAST, it is found that CA is a more accurate model to estimate the binary data on the highly heterogeneous carbon sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.