Abstract

Parkinson's disease is a neurological disorder associated with disfunction of dopaminergic pathways of the basal ganglia. In this study, we report the effects of decreasing plasma concentrations of the dopamine-agonist apomorphine on the size and extents of activity clusters observed with functional magnetic resonance imaging during a simple motor task. Eight patients at advanced disease stage and six healthy volunteers were studied during four consecutive sessions. We observed consistent activations in the primary sensorimotor area of the contralateral side and in the supplementary motor area of both patients and controls during the first session. During subsequent sessions, while the drug concentration gradually decreased in patients, they showed a fragmentation of the activity areas, with an overall decrease of involved volume and a decline of activity in the supplementary motor area. The appearing of activity in the ipsilateral motor area matched a partial recovery of supplementary motor area activation. During the last session, when patients showed severe dyskinesia, a widespread region of positive and negative correlations between signal and task was observed. We conclude that the lack of subcortical circuitry is partially reversible by apomorphine and that when the drug effects are reduced, there is a possible mechanism recruitment of alternate subcortical pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.