Abstract

Abstract In the multimodal multi-objective optimization problems (MMOPs), there exists more than one Pareto optimal solutions in the decision space corresponding to the same location on the Pareto front in the objective space. To solve the MMOPs, the designed algorithm is supposed to converge to the accurate and well-distributed Pareto front, and at the same time to search for the multiple Pareto optimal solutions in the decision space. This paper presents a new cluster based particle swarm optimization algorithm (PSO) with leader updating mechanism and ring-topology for solving MMOPs. Multiple subpopulations are formed by a new decision variable clustering method with the aim of searching for the multiple Pareto optima solutions and maintaining the diversity. Global-best PSO is employed for independent evolution of subpopulations, while local-best PSO with ring topology is used to enhance the information interaction among subpopulations. Seamlessly integrated, the proposed algorithm provides a good balance between exploration and exploitation. In addition, leader updating strategy is introduced to identify the best leaders in PSO. The performance of the proposed algorithm is compared with six state-of-the-art designs over 11 multimodal multi-objective optimization test functions. Experimental results demonstrate the effectiveness of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.