Abstract
Aiming at high network energy consumption and data delay induced by mobile sink in wireless sensor networks (WSNs), this paper proposes a cluster-based energy optimization algorithm called Cluster-Based Energy Optimization with Mobile Sink (CEOMS). CEOMS algorithm constructs the energy density function of network nodes firstly and then assigns sensor nodes with higher remaining energy as cluster heads according to energy density function. Meanwhile, the directivity motion performance function of mobile sink is constructed to enhance the probability of remote sensor nodes being assigned as cluster heads. Secondly, based on Low Energy Adaptive Clustering Hierarchy Protocol (LEACH) architecture, the energy density function and the motion performance function are introduced into the cluster head selection process to avoid random assignment of cluster head. Finally, an adaptive adjustment function is designed to improve the adaptability of cluster head selection by percentage of network nodes death and the density of all surviving nodes of the entire network. The simulation results show that the proposed CEOMS algorithm improves the cluster head selection self-adaptability, extends the network life, reduces the data delay, and balances the network load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.