Abstract

We provide a CLT for martingale transforms that holds even when the second moments are infinite. Compared to an analogous result in Hall and Yao (2003) we impose minimal assumptions and utilize the Principle of Conditioning to verify a modified version of Lindeberg’s condition. When the variance is infinite, the rate of convergence, which we allow to be matrix valued, is slower than n and depends on the rate of divergence of the truncated second moments. In many cases it can be consistently estimated. A major application concerns the characterization of the rate and the limiting distribution of the Gaussian QMLE in the case of GARCH type models with infinite fourth moments for the innovation process. The results are particularly useful in the case of the EGARCH(1,1) model as we show that the usual limit theory is still valid without any further parameter restrictions when we relax the assumption for finite fourth moments of the innovation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.