Abstract

Consider a $N\times n$ random matrix $Y_n=(Y_{ij}^{n})$ where the entries are given by $$ Y_{ij}^{n}=\frac{\sigma_{ij}(n)}{\sqrt{n}} X_{ij}^{n} , $$ the $X_{ij}^{n}$ being centered, independent and identically distributed random variables with unit variance and $(\sigma_{ij}(n); 1\le i\le N, 1\le j\le n)$ being an array of numbers we shall refer to as a variance profile. We study in this article the fluctuations of the random variable $$ \log\det\left(Y_n Y_n^* + \rho I_N \right) $$ where $Y^*$ is the Hermitian adjoint of $Y$ and $\rho > 0$ is an additional parameter. We prove that when centered and properly rescaled, this random variable satisfies a Central Limit Theorem (CLT) and has a Gaussian limit whose parameters are identified. A complete description of the scaling parameter is given; in particular it is shown that an additional term appears in this parameter in the case where the 4$^\textrm{th}$ moment of the $X_{ij}$'s differs from the 4$^{\textrm{th}}$ moment of a Gaussian random variable. Such a CLT is of interest in the field of wireless communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.