Abstract

In the condition of large passenger flow, subway station managers take measures of passenger flow control organization for reducing high safety operation risks at subway stations. The volume of passenger flow in urban railway network operation continues to increase and the Congestion of passenger flow is very high. Passenger flow control measures can greatly give birth to the pressure of transportation and ensure an urban rail transit system’s safe operation. In this paper, we develop a cloud model-based method for passenger flow control, which extends the four-level risk-control grade of a large passenger flow at facilities by considering its fuzzy and stochastic characteristics. Then, an efficient passenger flow control strategy for subway stations is made, where the control time and locations are simultaneously determined. Finally, a station in the Beijing subway is studied to test the validity of the proposed approach. The results show that the time of maximum queuing length is much shorter and the density of passenger flow is lower than existing methods in practice. With the in-depth study of complex network controllability, many studies have applied to control judgment and real network optimization. This paper analyzes the cloud-model-based method for passenger flow control at subway stations and therefore a new method can be incorporated for developing and optimizing control strategies. A few researchers have attempted to find the solution to the problem of crowding risk classification and the passenger flow control strategy. The focus of some studies simultaneously solves the passenger flow control with multiple stations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call