Abstract

Abstract. The accurate identification of the presence of cloud in the ground scenes observed by remote-sensing satellites is an end in itself. The lack of knowledge of cloud at high latitudes increases the error and uncertainty in the evaluation and assessment of the changing impact of aerosol and cloud in a warming climate. A prerequisite for the accurate retrieval of aerosol optical thickness (AOT) is the knowledge of the presence of cloud in a ground scene. In our study, observations of the upwelling radiance in the visible (VIS), near infrared (NIR), shortwave infrared (SWIR) and the thermal infrared (TIR), coupled with solar extraterrestrial irradiance, are used to determine the reflectance. We have developed a new cloud identification algorithm for application to the reflectance observations of the Advanced Along-Track Scanning Radiometer (AATSR) on European Space Agency (ESA)-Envisat and Sea and Land Surface Temperature Radiometer (SLSTR) on board the ESA Copernicus Sentinel-3A and -3B. The resultant AATSR–SLSTR cloud identification algorithm (ASCIA) addresses the requirements for the study AOT at high latitudes and utilizes time-series measurements. It is assumed that cloud-free surfaces have unchanged or little changed patterns for a given sampling period, whereas cloudy or partly cloudy scenes show much higher variability in space and time. In this method, the Pearson correlation coefficient (PCC) parameter is used to measure the “stability” of the atmosphere–surface system observed by satellites. The cloud-free surface is classified by analysing the PCC values on the block scale 25×25 km2. Subsequently, the reflection at 3.7 µm is used for accurate cloud identification at scene level: with areas of either 1×1 or 0.5×0.5 km2. The ASCIA data product has been validated by comparison with independent observations, e.g. surface synoptic observations (SYNOP), the data from AErosol RObotic NETwork (AERONET) and the following satellite products: (i) the ESA standard cloud product from AATSR L2 nadir cloud flag; (ii) the product from a method based on a clear-snow spectral shape developed at IUP Bremen (Istomina et al., 2010), which we call ISTO; and (iii) the Moderate Resolution Imaging Spectroradiometer (MODIS) products. In comparison to ground-based SYNOP measurements, we achieved a promising agreement better than 95 % and 83 % within ±2 and ±1 okta respectively. In general, ASCIA shows an improved performance in comparison to other algorithms applied to AATSR measurements for the identification of clouds in a ground scene observed at high latitudes.

Highlights

  • The large trends in warming over the Arctic in recent decades has received much attention from the global and regional climate change research community (Wendisch et al, 2017; Cohen et al, 2014)

  • The AATSR– SLSTR cloud identification algorithm (ASCIA) data product has been validated by comparison with independent observations, e.g. surface synoptic observations (SYNOP), the data from AErosol RObotic NETwork (AERONET) and the following satellite products: (i) the European Space Agency (ESA) standard cloud product from Advanced Along-Track Scanning Radiometer (AATSR) L2 nadir cloud flag; (ii) the product from a method based on a clear-snow spectral shape developed at IUP Bremen (Istomina et al, 2010), which we call ISTO; and (iii) the Moderate Resolution Imaging Spectroradiometer (MODIS) products

  • We evaluated the performance of ASCIA by comparison of the cloud identification with (i) the ESA standard cloud product for AATSR level 2 nadir cloud flag, (ii) the data obtained by applying ISTO to AATSR data, (iii) the MODIS cloud mask, (iv) the surface synoptic observations (SYNOP) and (vi) the AErosol RObotic NETwork (AERONET)

Read more

Summary

Introduction

The large trends in warming over the Arctic in recent decades has received much attention from the global and regional climate change research community (Wendisch et al, 2017; Cohen et al, 2014). Though the attribution of the origins of this phenomenon is controversially discussed (Serreze and Barry, 2011; Pithan and Mauritsen, 2014), cloud cover is well known to play a role in the Arctic surface–atmosphere radiation balance (Kellogg, 1975; Curry et al, 1996). The Arctic clouds are mostly optically thin and low with no remarkable contrast in the commonly used visible or thermal or microwave measurements to the underlying surface covered with highly reflecting snow and ice. For example, snow and ice are cold like clouds: the lack of strong thermal contrast is a limitation in the retrieval of clouds in the thermal infrared (Rossow and Garder, 1993; Curry et al, 1996)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call