Abstract

Due to the limited penetration of visible bands, optical remote sensing images are inevitably contaminated by clouds. Therefore, cloud detection or cloud mask products for optical image processing is a very important step. Compared with conventional optical remote sensing satellites (such as Landsat series and Sentinel-2), sustainable development science Satellite-1 (SDGSAT-1) multi-spectral imager (MII) lacks a short-wave infrared (SWIR) band that can be used to effectively distinguish cloud and snow. To solve the above problems, a cloud detection method based on spectral and gradient features (SGF) for SDGSAT-1 multispectral images is proposed in this paper. According to the differences in spectral features between cloud and other ground objects, the method combines four features, namely, brightness, normalized difference water index (NDWI), normalized difference vegetation index (NDVI), and haze-optimized transformation (HOT) to distinguish cloud and most ground objects. Meanwhile, in order to adapt to different environments, the dynamic threshold using Otsu’s method is adopted. In addition, it is worth mentioning that gradient features are used to distinguish cloud and snow in this paper. With the test of SDGSAT-1 multispectral images and comparison experiments, the results show that SGF has excellent performance. The overall accuracy of images with snow surface can reach 90.80%, and the overall accuracy of images with other surfaces is above 94%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call