Abstract
To extract information about the Earth's surface from Earth Observation data, a key processing step is the separation of pixels representing clear-sky observations of land or water surfaces from observations substantially influenced by clouds. This paper presents an algorithm used for this purpose specifically for data from the AATSR sensor on ENVISAT. The algorithm is based on the structure of the SPARC cloud detection scheme developed at CCRS for AVHRR data, then modified, calibrated and validated for AATSR data. It uses a series of weighted tests to calculate per-pixel cloud presence probability, and also produces an estimate of cloud top height and a cloud shadow flag. Algorithm parameters have been optimized for daytime use in Canada, and evaluation shows good performance with a mean daytime kappa coefficient of 0.76 for the ‘cloud’/‘clear’ classification when compared to independent validation data. Performance is independent of season, and is a dramatic improvement over the existing AATSR L1B cloud flag for Canada. The algorithm will be used at CCRS for processing AATSR data, and will form the basis of similar processing for data from the SLSTR sensors on Sentinel-3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.