Abstract

This paper presents a cloud-connected indoor air quality sensor system that can be deployed to patients' homes to study personal microenvironmental exposure for asthma research and management. The system consists of multiple compact sensor units that can measure residential NO2, ozone, humidity, and temperature at one-minute resolution and a cloud-based informatic system that acquires, stores, and visualizes the microenvironmental data in real-time. The sensor hardware can measure NO2 as low as 10 ppb and ozone at 15 ppb. The cloud informatic system is implemented using open-source software on Amazon Web Service for easy deployment and scalability. This system was successfully deployed to pediatric asthma patients' homes in a pilot study. In this study, we discovered that some families had short-term NO2 exposure higher than EPA's one-hour exposure limit (100 ppb), and NO2 micro-pollution episodes often arise from natural gas appliance usage such as gas stove burning during cooking. By combining the personalized air pollutant exposure measurements with the physiological responses from monitoring devices, patient diaries, or medical records, this system can potentially enable novel asthma research and personalized asthma management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.