Abstract

A strip-yield model was formulated to simulate creep-fatigue crack growth and to quantify the influence of hold time on plasticity-induced crack closure during creep-fatigue crack growth. Creep-fatigue experiments have shown that longer creep hold times result in faster crack growth rates in subsequent fatigue cycles. This model advances the idea that a decrease of plasticity-induced crack closure is experienced by the crack during fatigue loading when a longer hold time is applied each creep-fatigue cycle. Consequently, the crack tip experiences an increase in the effective stress intensity factor range causing faster growth rate during the fatigue loading. The weight function method was used to compute stress intensity factors and surface displacements for cracks embedded in a material experiencing elastic, plastic and creep deformations at elevated temperatures. It is shown that the longer the hold time, the larger the creep deformation and crack opening displacements in the near crack-tip region. In turn, this leads to a decrease in the crack-tip opening stress/load and faster crack growth rates during the subsequent fatigue cycle. The model was used to perform simulations of creep-fatigue crack growth at elevated temperatures in a nickel-base superalloy and AISI 316 austenitic steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.