Abstract

Specific wear rates of tribosystems always rely on the data obtained from wear experiments. Nonetheless, the events taking place during an experiment may often lead to wide variations and low repeatability of the results. In this work, the authors attempt to take a closer look into the dynamic contact conditions of a dry linearly reciprocating block-on-flat wear experiment. The finite element method and Archard’s wear model are used through COMSOL Multiphysics® 5.2a and LiveLink™ for MATLAB® software to model the wear and study the influence of different conditions of the block surface and alignment of the sample. Changes of the geometry of the block and the contact pressure are quantified for several back and forth motions, using an extrapolation scheme in the wear modelling methodology. The tracking of such changes allow a dynamic overview of how the block contact area and the contact pressure distribution change throughout time. The results show how the assumption of a constant contact area and use of a nominal contact pressure in calculating the wear rate in such experiments can be inappropriate, especially in the presence of roughness and misalignments of the block.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call