Abstract
Filaments in Herschel molecular cloud images are found to exhibit a "characteristic width". This finding is in tension with spatial power spectra of the data, which show no indication of this characteristic scale. We demonstrate that this discrepancy is a result of the methodology adopted for measuring filament widths. First, we perform the previously used analysis technique on artificial scale-free data, and obtain a peaked width distribution of filament-like structures. Next, we repeat the analysis on three Herschel maps and reproduce the narrow distribution of widths found in previous studies $-$ when considering the average width of each filament. However, the distribution of widths measured at all points along a filament spine is broader than the distribution of mean filament widths, indicating that the narrow spread (interpreted as a "characteristic" width) results from averaging. Furthermore, the width is found to vary significantly from one end of a filament to the other. Therefore, the previously identified peak at 0.1 pc cannot be understood as representing the typical width of filaments. We find an alternative explanation by modelling the observed width distribution as a truncated power-law distribution, sampled with uncertainties. The position of the peak is connected to the lower truncation scale and is likely set by the choice of parameters used in measuring filament widths. We conclude that a "characteristic" width of filaments is not supported by the available data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.