Abstract
ABSTRACTConsider k independent random samples such that ith sample is drawn from a two-parameter exponential population with location parameter μi and scale parameter θi, i = 1, …, k. For simultaneously testing differences between location parameters of successive exponential populations, closed testing procedures are proposed separately for the following cases (i) when scale parameters are unknown and equal and (ii) when scale parameters are unknown and unequal. Critical constants required for the proposed procedures are obtained numerically and the selected values of the critical constants are tabulated. Simulation study revealed that the proposed procedures has better ability to detect the significant differences and has more power in comparison to exiting procedures. The illustration of the proposed procedures is given using real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.