Abstract

In this paper, each of the two phases in dense two-phase flow is considered as continuous medium and the fundamental equations for two-phase flow are described in Eulerian form. The generalized constitutive relation of the Bingham fluid is applied to the dispersed phase with the analysis of physical mechanism of dense two-phase flow. The shearing stress of dispersed phase at a wall is used to give a boundary condition. Then a mathematical model for dense two-phase flow is obtained. In addition, the expressions of shearing stress of dispersed phase at a wall is derived according to the fundamental model of the factional collision between dispersed-phase particles and the wall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.