Abstract

Low-density polyethylene (LDPE) is one of the most important plastics, which is produced unfortunately under extreme conditions. In addition, it consists of robust aliphatic C─C bonds which are challenging to cleave for plastic recycling. A low-pressure and -temperature (pethylene=2bara, T=70°C) macromonomer-based synthesis of long chain branched polyethylene is reported. The introduction of recycle points permits the polymerization (grafting to) of the macromonomers to form the long chain branched polyethylene and its depolymerization (branch cleavage). Coordinative chain transfer polymerization employing ethylene and co-monomers is used for the synthesis of the macromonomers, permitting a high flexibility of their precise structure and efficient synthesis. The long chain branched polyethylene material matches key properties of low-density polyethylene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.