Abstract
This paper proposes a closed-loop maximum power point tracker (MPPT) for subwatt photovoltaic (PV) panels used in wireless sensor networks. Both high power efficiency and low circuit complexity are achieved. A microcontroller (μC) driven by a fast clock was used to implement an MPPT algorithm with a low processing time. This leads to a maximum central-processing-unit duty cycle of 6% and frees the μC to be used in the remaining tasks of the autonomous sensor, such as sensing, processing, and transmitting data. In order to reduce power consumption, dynamic power management techniques were applied, which implied the use of predictive algorithms. In addition, the measurement and acquisition of the output current and voltage of the PV panel, which increase circuit complexity, was avoided. Experimental measurements showed power consumptions of the MPPT controller as low as 52 μW for a 2.7-mW PV power and up to 388 μW for a 94.4-mW PV power. Tracking efficiency was higher than 99.4%. The overall efficiency was higher than 90% for a PV panel power higher than 20 mW. Field measurements showed an energy gain 15.7% higher than that of a direct-coupled solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.