Abstract

Existing charging techniques for lithium-ion batteries use a largely open-loop approach, where the charge profile is predecided based on a priori knowledge of cell parameters. There is a need for closed-loop charging techniques that use instantaneous cell voltage and/or temperature to modulate the charging current magnitude. This paper addresses this gap by proposing a constant-temperature constant-voltage (CT-CV) charging technique, considering cell temperature as a key degradation metric. The proposed CT-CV charging scheme employs a simple and easy-to-implement proportional-integral-derivative (PID) controller aided by a feed-forward term. The charging current is dynamically adjusted in response to the battery temperature, which indirectly reflects its aging and thermal environment. As per experimental results, the proposed method achieves 20% faster charging with the same total temperature rise as constant-current constant-voltage (CC-CV) technique. Alternatively, it causes 20% lower cell temperature rise for given total charge time. It can easily accommodate applications that demand even faster charging by simply raising the set temperature. This paper establishes the benefits of the proposed CT-CV charging at cell level and raises the possibility of extending it to the pack level by integrating it with battery management systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.