Abstract
This paper proposes a closed-form estimator for the stochastic volatility (SV) model. Compared to the usual maximum likelihood estimation (MLE), which is difficult to perform without appropriate approximations, the proposed method can be easily implemented and does not require the use of any numerical optimizer or starting values for iterations. Moreover, closed-form estimates can be supplied as initial values to MLE, for instance, conducted with a novel Laplace approximation. Denoted by MLE-C, this method consistently outperforms other estimators including the Markov chain Monte Carlo (MCMC). This is confirmed with simulation studies consisting of various combinations of true parameters and sample sizes. Our empirical data include daily returns of S&P 500, Nikkei 225 and DAX 100 over 2011–2020. The SV model estimated by MLE-C almost uniformly beats the popular GARCH counterparty, based on both the in-sample fit and out-of-sample forecasting criteria. Value-at-Risk analyses further demonstrate the capability of the SV model to accurately describe the tail behaviors of negative returns.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.