Abstract

Precise recognition of peptides is a daunting task owing to the substantial number of available amino acids and their combination into various oligo/polymeric structures in addition to the high hydration of their flexible frameworks. Here, we report the selective recognition of a dipeptide through a closed cavity strategy, in contrast to previous synthetic receptors with open cavities. A polyaromatic receptor with a virtually isolated, hydrophobic cavity exclusively binds one molecule of phenylalanine dipeptide from a mixture with its amino acid and tripeptide in water via multiple CH-π and hydrogen-bonding interactions in the complementary cavity. The binding selectivity persists even in the presence of other dipeptides, such as leucine-leucine, leucine-phenylalanine, tyrosine-phenylalanine, tryptophan-tryptophan, and aspartame, revealed by NMR/MS-based competitive binding experiments. ITC studies reveal that the selective binding of the phenylalanine dipeptide is relatively strong (Ka = 1.1 × 105 M-1) and an enthalpically and entropically favorable process (ΔH = -11.7 kJ mol-1 and TΔS = 17.0 kJ mol-1). In addition, the present receptor can be used for the emission detection of the dipeptide through a combination with a fluorescent dye in water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call