Abstract

Intermediate mass black holes (10$^3$-10$^5$ M$_\odot$) in the center of dwarf galaxies are believed to be analogous to growing Active Galactic Nuclei (AGN) in the early Universe. Their characterization can provide insight about the early galaxies. We present optical and near-infrared integral field spectroscopy of the inner $\sim$50 pc of the dwarf galaxy NGC4395, known to harbor an AGN. NGC 4395 is an ideal candidate to investigate the nature of dwarf AGN, as it is nearby ($d\approx4.4$ Mpc) enough to allow a close look at its nucleus. The optical data were obtained with the Gemini GMOS-IFU covering the 4500 A to 7300 A spectral range at a spatial resolution of 10 pc. The J and K-band spectra were obtained with the Gemini NIFS at spatial resolutions of $\sim$5 pc. The gas kinematics show a compact, rotation disk component with a projected velocity amplitude of 25 km s$^{-1}$. We estimate a mass of $7.7\times10^5$ M$_\odot$ inside a radius of 10 pc. From the H$\alpha$ broad line component, we estimate the AGN bolometric luminosity as $L_{ bol}=(9.9\pm1.4)\times10^{40}$ erg s$^{-1}$ and a mass $M_{ BH}=(2.5^{+1.0}_{-0.8})\times10^5$ M$_\odot$ for the central black hole. The mean surface mass densities for the ionized and molecular gas are in the ranges (1-2) M$_{\odot} $pc$^{-2}$ and (1-4)$\times10^{-3}$ M${_\odot}$ pc$^{-2}$ and the average ratio between ionized and hot molecular gas masses is $\sim$500. The emission-line flux distributions reveal an elongated structure at 24 pc west of the nucleus, which is blueshifted relative to the systemic velocity of the galaxy by $\approx$30 km s$^{-1}$. We speculate that this structure is originated by the accretion of a gas-rich small satellite or by a low metallicity cosmic cloud.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.