Abstract

Polyspecific human IgG preparations are indicated for the treatment of primary immunodeficiency disorders associated with defects in humoral immunity. In addition, intraveneous IgG (IVIG) is used to treat patients with autoimmune and systemic inflammatory diseases. Lectin chromatography on Sambucus nigra agglutinin stood at the cradle of the hypothesis that the anti-inflammatory properties depend on sialylation of the N-glycans in the Fc region of IgG. A detailed analysis of fractions obtained by lectin chromatography revealed that binding of IVIG is essentially mediated by Fab glycosylation. Moreover, experiments with a monoclonal antibody from a human cell line and IVIG Fc fragments indicated that at least two sialic acids in the Fc region of an antibody are required for lectin binding. Such glycoforms contain either two monosialylated glycans or a disialylated glycan and constitute 1% or less of the total human IgG. Arguably this small proportion holds the entire anti-inflammatory potency. A new mass spectrometric quantification method of IgG subclass ratio revealed that the IVIG Fc preparation essentially consists of IgG1. This observation may be relevant when studying the effect of human Fc in murine models of inflammation because mouse IgG subclasses differ substantially in their interaction with receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.