Abstract
The circadian clock mechanism in the mouse is composed of interlocking transcriptional feedback loops. Two transcription factors, CLOCK and BMAL1, are believed to be essential components of the circadian clock. We have used the Cre-LoxP system to generate whole-animal knockouts of CLOCK and evaluated the resultant circadian phenotypes. Surprisingly, CLOCK-deficient mice continue to express robust circadian rhythms in locomotor activity, although they do have altered responses to light. At the molecular and biochemical levels, clock gene mRNA and protein levels in both the master clock in the suprachiasmatic nuclei and a peripheral clock in the liver show alterations in the CLOCK-deficient animals, although the molecular feedback loops continue to function. Our data challenge a central feature of the current mammalian circadian clock model regarding the necessity of CLOCK:BMAL1 heterodimers for clock function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.