Abstract
BackgroundTooth extraction commonly leads to loss of residual alveolar ridge, thus compromising the room available for the implant placement. To combat the post-extraction alveolar loss, alveolar ridge preservation is practiced, with the advent of the biomaterial available. The purpose of this study was to assess the efficiency of calcium phosphosilicate biomaterial in alveolar ridge preservation. Twenty patients indicated for extraction were selected followed by socket grafting using calcium phosphosilicate. Implant placement was done 6 months postoperatively during which a core was harvested from the preserved sockets. Clinico-radiographic measurements of hard and soft tissues were taken at baseline and 6 months post-grafting.ResultsThere were no significant changes in the radiographic and soft tissue parameters while significant changes in hard tissue parameters with 1.9 mm (p = 0.013) gain in mid-buccal aspect and 1.1 mm (p = 0.019) loss in horizontal bone width were observed. The histomorphometric evaluation depicted the vital bone volume of 54.5 ± 16.76%, non-mineralized tissue 43.50 ± 15.80%, and residual material 2.00 ± 3.37%.ConclusionThe implants placed in these preserved ridges presented 100% success rate with acceptable stability after a 1-year follow-up, concluding calcium phosphosilicate is a predictable biomaterial in alveolar ridge preservation.
Highlights
Tooth extraction commonly leads to loss of residual alveolar ridge, compromising the room available for the implant placement
This study aims at clinical and histological evaluation of a traumatically extracted and grafted socket with calcium phosphosilicate putty enriched with Platelet-rich fibrin (PRF) and collagen plug, 6 months after grafting
This results in the formation of a hydroxyl-carbonate apatite (HCA) layer, a biological apatite identical to the mineral phase of the bone, which allows for more rapid repair and regeneration of the bone than other synthetic graft materials [18, 19]
Summary
Tooth extraction commonly leads to loss of residual alveolar ridge, compromising the room available for the implant placement. To combat the post-extraction alveolar loss, alveolar ridge preservation is practiced, with the advent of the biomaterial available. The purpose of this study was to assess the efficiency of calcium phosphosilicate biomaterial in alveolar ridge preservation. Twenty patients indicated for extraction were selected followed by socket grafting using calcium phosphosilicate. Implant placement was done 6 months postoperatively during which a core was harvested from the preserved sockets. The most acceptable and desirable position of the implant would be in the alveolar socket itself to mimic the natural dentition [1]. Schropp stated that the post-extraction healing and residual ridge dimensions are likely to be dependent on the alveolar crestal bone levels at the extraction site rather than that of the adjacent tooth [2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.