Abstract

BackgroundWith the development of medical technology, credible options for defect reconstructions after the resection of benign bone tumors of the lower extremities have become a high priority. As the current reconstructive methods commonly used in clinical practice have some flaws, new methods of reconstruction need to be explored. We aimed to prepare a new kind of bioactive scaffold for the repair of bone defects through a stem cell rapid screening–enrichment–composite technology system developed by our team. Furthermore, we aimed to investigate the curative effects of these bioactive scaffolds.MethodsFirstly, cell count, trypan blue exclusion rate, and ALP staining were used to evaluate changes in enrichment efficiency, cell activity, and osteogenic ability before and after enrichment. Then, the scaffolds were placed under the skin of nude mice to verify their osteogenic effects in vivo. Finally, the scaffolds were used for the reconstruction of bone defects after operations for benign bone tumors in a patient’s lower limb. The healing status of the defect site at 1 and 3 months was assessed by X-ray, and the Musculoskeletal Tumor Society (MSTS) score was applied to reflect the recovery of patient limb function.ResultsThe system effectively enriched stem cells without affecting the activity and osteogenic abilities of the bone marrow mesenchymal stem cells (BMSCs). Meanwhile, the bioactive scaffolds obtained better osteogenic effects. In patients, the active scaffolds showed better bone integration and healing status, and the patients also obtained higher MSTS scores at 1 and 3 months after surgery.ConclusionAs a new technique, the rapid screening–enrichment–composite technology of stem cells demonstrates a better therapeutic effect in the reconstruction of bone defects after surgery for benign bone tumors of the lower extremities, which will further improve patient prognosis.

Highlights

  • With the development of medical technology, credible options for defect reconstructions after the resection of benign bone tumors of the lower extremities have become a high priority

  • Patient inclusion criteria and exclusion criteria Inclusion criteria: (1) benign bone tumors occurring in the long bones of the limbs with local medullary cavity involvement associated with large bone defects after surgery and with bone grafting indications suitable for rapid stem cell screening and enrichment technology; (2) no hematopoietic systemic disease; and (3) a follow-up time of no less than 12 months and with complete follow-up data available

  • Cell viability, and osteogenic ability The number of nucleated cells in the blood of the bone marrow, both before and after enrichment, was measured for each patient, and it was found that the number of cells after enrichment (14.89 ± 4.37 × 106) were significantly less than the number before enrichment (16.67 ± 3.29 × 106)

Read more

Summary

Introduction

With the development of medical technology, credible options for defect reconstructions after the resection of benign bone tumors of the lower extremities have become a high priority. We aimed to prepare a new kind of bioactive scaffold for the repair of bone defects through a stem cell rapid screening–enrichment–composite technology system developed by our team. The incidence ratio among benign bone tumors, malignant bone tumors, and tumor-like lesions is 5:4:1 [1]. As benign bone tumors usually do not pose a threat to patient’s lives, the demands for improved postoperative limb function are often higher than those for malignant bone tumors. There is an increasing demand relating to how doctors can provide the most reliable reconstruction of these bone defects after complete removal of the tumor in order to ensure the maximum function of the affected limb

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call