Abstract

BackgroundAssessing risk of future exacerbations is an important component in COPD management. History of exacerbation is a strong and independent predictor of future exacerbations, and the criterion of ≥2 nonhospitalized or ≥1 hospitalized exacerbation is often used to identify high-risk patients in whom therapy should be intensified. However, other factors or “treatable traits” also contribute to risk of exacerbation.ObjectiveThe objective of the study was to develop and externally validate a novel clinical prediction model for risk of hospitalized COPD exacerbations based on both exacerbation history and treatable traits.Patients and methodsA total of 237 patients from the COPD Registry of Changi General Hospital, Singapore, aged 75±9 years and with mean post-bronchodilator FEV1 60%±20% predicted, formed the derivation cohort. Hospitalized exacerbation rate was modeled using zero-inflated negative binomial regression. Calibration was assessed by graphically comparing the agreement between predicted and observed annual hospitalized exacerbation rates. Predictive (discriminative) accuracy of the model for identifying high-risk patients (defined as experiencing ≥1 hospitalized exacerbations) was assessed with area under the curve (AUC) and receiver operating characteristics analyses, and compared to other existing risk indices. We externally validated the prediction model using a multicenter dataset comprising 419 COPD patients.ResultsThe final model included hospitalized exacerbation rate in the previous year, history of acute invasive/noninvasive ventilation, coronary artery disease, bronchiectasis, and sputum nontuberculous mycobacteria isolation. There was excellent agreement between predicted and observed annual hospitalized exacerbation rates. AUC was 0.789 indicating good discriminative accuracy, and was significantly higher than the AUC of the Global Initiative for Chronic Obstructive Lung Disease (GOLD) risk assessment criterion (history of ≥1 hospitalized exacerbation in the previous year) and the age, dyspnea, and obstruction index. When applied to the independent multicenter validation cohort, the model was well-calibrated and discrimination was good.ConclusionWe have derived and externally validated a novel risk prediction model for COPD hospitalizations which outperforms several other risk indices. Our model incorporates several treatable traits which can be targeted for intervention to reduce risk of future hospitalized exacerbations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.