Abstract

One of the major challenges of providing reliable healthcare services is to diagnose and treat diseases in an accurate and timely manner. Recently, many researchers have successfully used artificial neural networks as a diagnostic assessment tool. In this study, the validation of such an assessment tool has been developed for treatment of the femoral peripheral arterial disease using a radial basis function neural network (RBFNN). A data set for training the RBFNN has been prepared by analyzing records of patients who had been treated by the thoracic and cardiovascular surgery clinic of a university hospital. The data set includes 186 patient records having 16 characteristic features associated with a binary treatment decision, namely, being a medical or a surgical one. K-means clustering algorithm has been used to determine the parameters of radial basis functions and the number of hidden nodes of the RBFNN is determined experimentally. For performance evaluation, the proposed RBFNN was compared to three different multilayer perceptron models having Pareto optimal hidden layer combinations using various performance indicators. Results of comparison indicate that the RBFNN can be used as an effective assessment tool for femoral peripheral arterial disease treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.