Abstract

AbstractTo improve the understanding of high-latitude rain microphysics and its implications for the remote sensing of rainfall by ground-based and spaceborne radars, raindrop size measurements have been analyzed that were collected over five years with a Joss–Waldvogel disdrometer located in Järvenpää, Finland. The analysis shows that the regional climate is characterized by light rain and small drop size with narrow size distributions and that the mutual relations of drop size distribution parameters differ from those reported at lower latitudes. Radar parameters computed from the distributions demonstrate that the high latitudes are a challenging target for weather radar observations, particularly those employing polarimetric and dual-frequency techniques. Nevertheless, the findings imply that polarimetric ground radars can produce reliable “ground truth” estimates for space observations and identify dual-frequency radars utilizing a W-band channel as promising tools for observing rainfall in the high-latitude climate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.