Abstract

Efforts to increase agricultural productivity, adapt to climate change, and reduce the carbon footprint of agriculture are reflected in a growing interest in climate-smart agriculture (CSA). Specific indicators of productivity, adaptation and mitigation are commonly used in support of claims about the climate smartness of practices. However, it is rare that these three objectives can be optimized simultaneously by any one strategy. In evaluating the relative climate smartness of different agricultural practices, plans and policies, there is a need for metrics that can simultaneously represent all three objectives and therefore be used in comparing strategies that have different benefits and trade-offs across this triad of objectives. In this context, a method for developing a Climate Smartness Index (CSI) is presented. The process of developing the index follows four steps: (1) defining system specific climate smartness; (2) selecting relevant indicators; (3) normalizing against reference values from a systematic literature review; and (4) aggregating and weighting. The CSI presented here has been developed for application in a systematic review of rice irrigation strategies and it combines normalized water productivity (WP) and greenhouse gas intensity (GHGI) The CSI was developed for application to data from published field experiments that assessed the impact of water management practices in irrigated rice, focusing on practices heralded as climate-smart strategies, such as Alternate Wetting and Drying (AWD). The analysis shows that the CSI can provide a consistent judgment of the treatments based on the evidence of water efficiency and reduced greenhouse gas intensity reported in such studies. Using a measurable and replicable index supports the aim of generating a reliable quantification of the climate smartness of agricultural practices. The same four step process can be used to build metrics for a broad range of CSA practice, policy and planning.

Highlights

  • Climate-Smart Agriculture (CSA) has been heralded as the basis of transformative changes toward sustainability

  • Across the 16 studies, the range of Climate Smartness Index (CSI) values for AWD treatments ranged from −0.3 to 0.72, while the range for continuous flooding (CF) was −0.62 to 0.44

  • Other water management strategies like FI, Sprinkler irrigation (SI), CF-30%, CF-70% have a closer CSI range with CF treatments (−0.67 to 0.5).The broad CSI range in the water treatments might be the result of differences in the agro-ecological context of the studies

Read more

Summary

Introduction

Climate-Smart Agriculture (CSA) has been heralded as the basis of transformative changes toward sustainability. As a response to climate challenges, CSA founded on mitigation, adaptation and productivity pillars has been presented as an approach in agriculture aimed at simultaneously achieving three goals: increasing productivity, adapting to climate change, and reducing the GHG emissions (Lipper et al, 2014). To be meaningful, these generic CSA objectives need to be translated. It is important to recognize that “climate smartness,” is a relative concept, and this is part of the reason for its ambiguity (Neufeldt et al, 2013)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call