Abstract
In this study, initial elements of a modelling framework aimed to become a spatial forecasting model for the transmission risk of West Nile virus (WNV) are presented. The model describes the dynamics of a WNV epidemic in population health states of mosquitoes, birds and humans and was applied to the case of Greece for the period 2010–2019. Calibration was performed with the available epidemiological data from the Hellenic Centre for Disease Control and Prevention and the environmental data from the European Union's earth observation program, Copernicus. Numerical results of the model for each municipality were evaluated against observations. Specifically, the occurrence of WNV, the number of infected humans and the week of incidence predicted from the model were compared to the corresponding numbers from observations. The results suggest that dynamic downscaling of a climate-dependent epidemiological model is feasible down-to roughly 80km2. This below nomenclature of territorial units for statistics (NUTS) 3 level represents the municipalities being the lowest level of administrative units, able to cope with WNV and take actions. The average detection probability in hindcast mode was 72%, improving strongly as the number of infected humans increased. Using the developed model, we were also able to show the fundamental importance of the May temperatures in shaping the WNV dynamics. The modeling framework couples epidemiological and environmental dynamical variables with surveillance data producing risk maps downscaled at a local level. The approach can be expanded to provide targeted early warning probabilistic forecasts that can be used to inform public health policy decision making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.