Abstract

Our objective was to assess the effect of changes in rainfall amount and distribution on CO2 emissions and dissolved organic C (DOC) leaching. We manipulated soil moisture, using a roof constructed below the canopy of a 65‐yr‐old Norway spruce plantation [Picea abies (L.) Karst.] at Solling, Germany. We simulated two scenarios: a prolonged summer drought of 172 d followed by a rewetting period of 19 d and a shorter summer drought of 108 d followed by a rewetting period of 33 d. Soil CO2 emission, DOC, soil matric potential, and soil temperature were monitored in situ for 2 yr. On an annual basis no significant influence of the droughts on DOC leaching rates below the rhizosphere was observed. Although not significantly, the droughts tended to reduce soil respiration. Rewetting increased CO2 emissions in the first 30 d by 48% (P < 0.08) in 1993 and 144% (P < 0.01) in 1994. The CO2 flush during rewetting was highest at high soil temperatures and strongly affected the annual soil respiration rate. The annual emission rate from the drought plot was not affected by the drought and rewetting treatments in 1993 (2981 kg C ha−1 yr−1), but increased by 51% (P < 0.05) to 4813 kg C ha−1 yr−1 in 1994. Our results suggest that reduction of rainfall or changes in rainfall distribution due to climate change will affect soil CO2 emissions and possibly C storage in temperate forest ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.