Abstract

Covalently crosslinked polymeric materials, known as thermosets, possess enhanced mechanical strength and thermal stability relative to the corresponding uncrosslinked thermoplastics. However, the presence of covalent inter-chain crosslinks that makes thermosets so attractive is precisely what makes them so difficult to reprocess and recycle. Here, we demonstrate the introduction of chemically cleavable groups into a bis-diazirine crosslinker. Application of this cleavable crosslinker reagent to commercial low-functionality polyolefins (or to a small-molecule model) results in the rapid, efficient introduction of molecular crosslinks that can be uncoupled by specific chemical inputs. These proof-of-concept findings provide one potential strategy for circularization of the thermoplastic/thermoset plastics economy, and may allow crosslinked polyolefins to be manufactured, used, reprocessed, and re-used without losing value. As an added benefit, the method allows the ready introduction of functionality into non-functionalized commodity polymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.