Abstract

AbstractIn manufacturing sector, looking for a balance between environmental and technical efficiency taking into account productivity is mandatory. Some sectors, such as the biomedical manufacturing sector, also needs to consider the cleanness inherent to prosthesis manufacturing processes for avoiding pathogens transfer to the human body, that is, neither chemicals, bacteria, nor uncontrolled metals can be introduced during the surgical intervention. This work here presented stems from the idea of analyzing the cleanness of cryogenic cooling to be applied to medical pieces. For this, several samples were machined using CO2 cryogenic technology and oil emulsions, respectively. In particular, a modified milling tool was used to apply not only efficiently as cutting fluid but also as cleaner fluid. Afterwards, they were analyzed by Scanning Electron Microscope (SEM) with the aim of looking for biological remains. Finally, with the aim of validating the modified tool in which CO2 is introduced axially as internal coolant, its tool life was tested in comparison with a conventional one. The results shown that the use of CO2 as internal coolant significantly improves the cleanness of current machining processes in comparison with the use of oil emulsions and the way in which is injected does not affect to machining performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.