Abstract
Water pollution deteriorates ecosystems and is a great threat to the environment. The environmental benefits of wastewater treatment are extremely important to minimize pollutants. Here, the oxalic acid used as reductant was used to treat the wastewater which contained high concentration of vanadium (V). Nearly 100% of vanadium was efficiently reduced at selected reaction conditions. The optimization results simulated by response surface methodology (RSM) analysis indicated the parameters all had significant effects on the reduction process, and followed the order: dosage of oxalic acid > reaction temperature > reaction time > initial pH of vanadium-containing wastewater. The reduction behavior analysis indicated that the pseudo first-order kinetics model could describe well the reduction process with Ea = 42.14 kJ/mol, and was described by the equation as followed: −LnC=K0·[pH]0.1016·[n(O)/n(V)]2.4569·[T]2.2588·exp(−42.14/T)·t.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.