Abstract

A temporal clausal resolution method was originally developed for linear time temporal logic and further extended to the branching-time framework of Computation Tree Logic (CTL). In this paper, following our general idea to expand the applicability of this efficient method to more expressive formalisms useful in a variety of applications in computer science and AI requiring branching time logics, we define a clausal resolution technique for Extended Computation Tree Logic (ECTL). The branching-time temporal logic ECTL is strictly more expressive than CTL in allowing fairness operators. The key elements of the resolution method for ECTL, namely the clausal normal form, the concepts of step resolution and a temporal resolution, are introduced and justified with respect to this new framework. Although in developing these components we incorporate many of the techniques defined for CTL, we need novel mechanisms in order to capture fairness together with the limit closure property of the underlying tree models. We accompany our presentation of the relevant techniques by examples of the application of the temporal resolution method. Finally, we provide a correctness argument and consider future work discussing an extension of the method yet further, to the logic CTL ∗, the most powerful logic of this class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.