Abstract
We show that every small homotopy functor from spectra to spectra is weakly equivalent to a filtered colimit of representable functors represented in cofibrant spectra. Moreover, we present this classification as a Quillen equivalence of the category of small functors from spectra to spectra equipped with the homotopy model structure and the opposite of the pro-category of spectra with the strict model structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.