Abstract
In the wake of a preceding article [31] introducing the Schrodinger–Virasoro group, we study its affine action on a space of (1+1)-dimensional Schrodinger operators with time- and space-dependent potential V periodic in time. We focus on the subspace corresponding to potentials that are at most quadratic in the space coordinate, which is in some sense the natural quantization of the space of Hill (Sturm–Liouville) operators on the one-dimensional torus. The orbits in this subspace have finite codimension, and their classification by studying the stabilizers can be obtained by extending Kirillov's results on the orbits of the space of Hill operators under the Virasoro group. We then explain the connection to the theory of Ermakov–Lewis invariants for time-dependent harmonic oscillators. These exact adiabatic invariants behave covariantly under the action of the Schrodinger–Virasoro group, which allows a natural classification of the orbits in terms of a monodromy operator on L2(ℝ) which is closely related to the monodromy matrix for the corresponding Hill operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.