Abstract
Recently, Big Data processing becomes crucial to most enterprise and government applications due to the fast growth of the collected data. However, this data often includes private personal information that arise new security and privacy concerns. Moreover, it is widely agreed that the sheer scale of big data makes many privacy preserving techniques unavailing. Therefore, in order to ensure privacy in big data, anonymization is suggested as one of the most efficient approaches. In this paper, we will provide a new detailed classification of the most used non-cryptographic anonymization techniques related to big data including generalization and randomization approaches. Besides, the paper evaluates the presented techniques through integrity, confidentiality and credibility criteria. In addition, three relevant anonymization techniques including k-anonymity, l-diversity and t-closeness are tested on an extract of a huge real data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Communication Networks and Information Security (IJCNIS)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.